
9

Detecting and Measuring Security Risks of Hosting-Based
Dangling Domains

MINGMING ZHANG, Tsinghua University, China
XIANG LI, Tsinghua University, China
BAOJUN LIU∗, Tsinghua University and Quan Cheng Laboratory, China
JIANYU LU, QI-ANXIN Technology Research Institute, China
YIMING ZHANG∗, Tsinghua University, China
JIANJUN CHEN, Tsinghua University and Zhongguancun Laboratory, China
HAIXIN DUAN, Tsinghua University and Quan Cheng Laboratory, China
SHUANG HAO, University of Texas at Dallas, USA
XIAOFENG ZHENG, Tsinghua University and QI-ANXIN Technology Research Institute, China

Public hosting services provide convenience for domain owners to build web applications with better scalability
and security. However, if a domain name points to released service endpoints (e.g., nameservers allocated by a
provider), adversaries can take over the domain by applying the same endpoints. Such a security threat is called
“hosting-based domain takeover”. In recent years, a large number of domain takeover incidents have occurred;
even well-known websites like the subdomains of microsoft.com have been impacted. However, until now,
there has been no effective detection system to identify these vulnerable domains on a large scale. In this paper,
we fill this research gap by presenting a novel framework, HostingChecker, for detecting domain takeovers.
Compared with previous work, HostingChecker expands the detection scope and improves the detection
efficiency by: (i) systematically identifying vulnerable hosting services using a semi-automated method; and
(ii) effectively detecting vulnerable domains through passive reconstruction of domain dependency chains. The
framework enables us to detect the subdomains of Tranco sites on a daily basis. We evaluate the effectiveness
of HostingChecker and eventually detect 10,351 subdomains from Tranco Top-1M apex domains vulnerable
to domain takeover, which are over 8× more than previous findings. Furthermore, we conduct an in-depth
security analysis on the affected vendors, like Amazon and Alibaba, and gain a suite of new insights, including
flawed implementation of domain ownership validation. Following responsible disclosure processes, we have
reported issues to the security response centers of affected vendors, and some (e.g., Baidu and Tencent) have
adopted our mitigation.

CCS Concepts: • Networks→ Cloud computing; • Security and privacy→ Network security.

Additional Key Words and Phrases: public hosting service; domain takeover

∗Corresponding Authors: Baojun Liu (lbj@tsinghua.edu.cn) and Yiming Zhang (zhangyiming@tsinghua.edu.cn).

Authors’ addresses: Mingming Zhang, zmm18@mails.tsinghua.edu.com, Tsinghua University, Beijing, China; Xiang Li,
Tsinghua University, Beijing, China; Baojun Liu, Tsinghua University and Quan Cheng Laboratory, Beijing, China; Jianyu
Lu, QI-ANXIN Technology Research Institute, Beijing, China; Yiming Zhang, Tsinghua University, Beijing, China; Jianjun
Chen, Tsinghua University and Zhongguancun Laboratory, Beijing, China; Haixin Duan, Tsinghua University and Quan
Cheng Laboratory, Beijing, China; Shuang Hao, University of Texas at Dallas, Dallas, Texas, USA; Xiaofeng Zheng, Tsinghua
University and QI-ANXIN Technology Research Institute, Beijing, China.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).
2476-1249/2023/3-ART9
https://doi.org/10.1145/3579440

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3579440

9:2 Mingming Zhang et al.

ACM Reference Format:
Mingming Zhang, Xiang Li, Baojun Liu, Jianyu Lu, Yiming Zhang, Jianjun Chen, Haixin Duan, Shuang Hao,
and Xiaofeng Zheng. 2023. Detecting and Measuring Security Risks of Hosting-Based Dangling Domains. Proc.
ACM Meas. Anal. Comput. Syst. 7, 1, Article 9 (March 2023), 28 pages. https://doi.org/10.1145/3579440

1 INTRODUCTION
Domain names serve to identify Internet resources and are adopted in multiple mainstream security
paradigms, such as digital certificate application [40] and email trustworthiness validation [33, 46].
Several high-profile breaches, however, have shown the increasing prevalence and power of domain
takeover attacks. Adversaries can exploit the domains that are outside of their authority for
cybercrimes such as malware distribution, phishing, and certificate forging [29, 48, 52, 60]. Dangling
DNS records, in which domain names are resolved to an expired domain or a discontinued service,
are the major cause of domain takeover [48]. Attackers can compromise domains of prominent
companies (e.g., Microsoft [2]), media organizations (e.g., American News [3]), and political websites
(e.g., Donald Trump [28]) by exploiting these dangling DNS records. We refer to domains with
dangling DNS records as “dangling domains” in this paper.
Hosting-based dangling domains (𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡). Amajor source of dangling domains is discontinued
hosting services. Large organizations are increasingly hosting domains on public platforms, such
as cloud storage and content delivery networks (CDN), to improve scalability and security. The
platforms allocate ephemeral resources, named “service endpoints”, to serve customers’ domain
names. Meanwhile, customers should prove their domain ownership and resolve their domains to
the allocated endpoints by configuring DNS records (e.g., CNAME and NS). This process is known
as “custom domain connection”. If a service is discontinued, the endpoints allocated for it will be
released and can be acquired by other customers. The released endpoints could be further exploited
by adversaries to initiate domain takeover attacks if the platform fails to correctly verify the domain
ownership and domain owners forget to purge obsolete DNS records.
Motivation. Although research efforts [29, 48, 58] have been devoted to mitigating the security
threats of domain takeover, incidents are still on the rise, increasing by 25% from 2020 to 2021 [34],
particularly when public services are involved. It motivates us to explore why domain takeovers
occur ceaselessly. In the end, we find two research gaps in detecting𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 . First, there is no generic
method for discovering third-party hosting services. The service types and domain hosting strategies
offered by public providers are highly diverse [12], with no uniform features for identifying
vulnerable services. Therefore, previous studies only focused on user-reported cases [36, 43] with
ad hoc analysis [58]. Second, an efficient detection system is absent for quickly digging out 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡

across enormous domains in the wild. Because Tranco Top-1M domains1 have tens of millions of
subdomains, timely detecting 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 among them is challenging. Prior detection methods mainly
relied on active DNS lookups, which are rather slow. This brings down detection efficiency [48].
Our study. We introduce HostingChecker, a novel framework that can assist in spotting hosting
services and efficiently detect vulnerable domains hosted on discontinued services (Section 4). It
overcomes the aforementioned challenges in the following ways. For the first challenge, we design
a semi-automated service discoverer to expand the detection scope. We observe that public hosting
services share general domain features that can be automatically mined from passive DNS (PDNS)
data. Customers must resolve (i.e., point) their domains to the service endpoint domains to launch
a hosting service, which is referred to as the “domain dependencies”. Meanwhile, endpoints of
the same service use identical naming conventions,2 which we term “endpoint patterns”. To this
end, we identify endpoint domain candidates with high domain dependencies and extract endpoint
1Tranco is a research-oriented top site ranking list that mainly consists of apex domains. https://tranco-list.eu/methodology
2<prefix>.<service>.<location>.amazonaws.com, e.g., alice.s3.us-east-1.amazonaws.com.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

https://doi.org/10.1145/3579440

Detecting and Measuring Security Risks of Hosting-Based Dangling Domains 9:3

patterns using a novel Domain Suffix Tree. For the second challenge, HostingChecker employs
a passive method to efficiently detect vulnerable domains. Instead of actively performing DNS
queries, it reconstructs domain resolution chains passively by leveraging a local PDNS dataset.
Experiments and findings. We implement HostingChecker on a PDNS dataset containing 101
billion DNS responses. We then conduct a large-scale and longitudinal measurement study, i.e.,
101 rounds of measurements on the subdomains under Tranco Top-1M apex domains [15] from
Dec 16, 2021, to Jul 28, 2022 (Section 5). HostingChecker takes approximately one day to process
each measurement round. Compared to previous studies, HostingChecker has a higher detection
efficiency and detects more vulnerable domains than other programs [36, 43, 48, 58]. Below, we
highlight the major findings of our analysis:

(i) A holistic characterization of public hosting services. Utilizing HostingChecker, we discover
65 vulnerable services that can be leveraged for domain takeover, with 34 newly reported by us. Our
discovered vulnerable hosting services cover 52 public vendors, including popular vendors such as
Alibaba [4], Amazon [5], and Cloudflare [10]. Based on these services, we delve into their domain
hosting strategies to gain more insights for mitigating domain takeover threats. Specifically, we
find that public service providers employ diverse domain connection methods, e.g., by configuring
a DNS CNAME record. However, most (i.e., 7 out of 9) methods are vulnerable and could be exploited
for domain takeover. Although several providers have deployed domain ownership validation
(DOV) strategies for defense, we discover 4 flawed implementations that can bypass DOV and affect
the top 20 hosting vendors. In particular, some previously reported non-exploitable services [36]
are found to be exploitable again. For responsible disclosure, we report vulnerabilities to affected
vendors and receive confirmation from ten of them, including Amazon, Tencent, and Huawei.

(ii) A longitudinal measurement of 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 among high-profile domain names. Through a 7-
month measurement study, we find that hosting-based domain takeover threats are still prevalent.
In detail, 114,063 (1.0%) of all tested domains have been hosted on vulnerable services and 10,351
are 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 (8× more than previous findings). In addition, popular apex domains are particularly
susceptible to such threats since they often deploy subdomains to public services. In our results,
the discovered 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 belong to 2,096 popular apex domains, including reputable universities
(e.g., Stanford and Rice) and companies (e.g., Baidu, Huawei, and Marriott). Through periodic
and large-scale measurements, we find that such threats appear frequently and are long-lasting.
Specifically, we observe that 270 new𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 emerge per week on average, and 60%𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 remain
vulnerable for over 5 days (36.3% for over a month), leaving a substantial window of time for attacks.
Moreover, by analyzing PDNS logs, we find that 45.5% 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 still receive queries from 70 million
client IPs. Thus, timely detection is greatly needed to reduce the attack surface.
Contributions. In this study, we make the following contributions:

• Detection system. We present a novel and effective framework, HostingChecker, that can
perform daily checks on tens of millions of subdomains. Because of its high efficiency and
coverage, it can help the security community mitigate hosting-based domain takeover risks.
• Extensive measurements. We deploy HostingChecker on a large-scale PDNS dataset and
conduct a 7-month longitudinal measurement on Top-1M’s subdomains. We detect 10,351
𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 , which is 8 times more than previous study.
• Systematic service inspection and threat analysis. We present the holistic characteristics of public
hosting services. We discover 65 vulnerable services, including 34 new ones, and new security
flaws in hosting practices. In the end, we provide an in-depth understanding of the reasons
for hosting-based domain takeover and discuss best practices to support the community in
mitigating threats.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

9:4 Mingming Zhang et al.

2 BACKGROUND
2.1 DNS Basics
Domain name space.A Fully Qualified Domain Name (FQDN) like foo.example.com is presented
as a hierarchical tree, and each layer is organized within a DNS zone. The top of the hierarchy is
the root zone. Below the root is the Top-Level Domain (TLD, e.g., .com). Under TLDs, Second-Level
Domains (SLDs, e.g., example.com) are open for registration from registrars (e.g., GoDaddy [11]).
The DNS community generally uses public suffixes [13] or effective TLDs (eTLDs) to refer

to the TLDs that are directly operated by registrars, such as .com and .co.uk. Besides, it uses
apex domains, or apexes (i.e., eTLD+1), to represent the domains that registrants can apply for,
such as example.com. Registrants can create any subdomains for the apexes they control, e.g.,
foo.example.com. For convenience, we refer to all FQDNs under an apex domain as its subdomains.
DNS resource records. In the domain name space, resource records (RRs) are the information
entries associated with a certain domain name in DNS zone files. RRs associate domain names
with their corresponding resolution results, which are referred to as the data fields of the RRs.
The authoritative DNS (aDNS) servers of a domain are responsible for managing the DNS RRs and
translating the domain name to other resources. Typically, domain owners can configure the aDNS
servers and control the domain resolution process by setting DNS RRs. Common RRs include: A
records (IPv4 addresses, e.g., 1.2.3.4), CNAME records (domain alias, e.g., alias.example.com), NS
records (authoritative name servers), and MX records (email servers).

2.2 Dangling DNS Records
Dangling DNS records are a collection of DNS RRs in which the targeted resources (i.e., the data
fields) are invalid, having expired, been released, or never been deployed. Previous work has
identified four categories of security-sensitive dangling records [48]:
• Dangling A records. They occur if some domains point to an IP address that can be acquired
by any person. For example, the IP address is in a shared IP pool of public cloud instances (e.g.,
Amazon EC2 and Microsoft Azure) and is deprovisioned.
• Dangling CNAME records. They occur when a canonical domain in CNAME records expires or
becomes available on a public hosting platform.
• Dangling NS and MX records. They are also unsafe when name servers and mail servers can
be controlled due to expiration or troublesome service hosting. The threats caused by dangling
NS and MX records are more severe since all domains delegated to these vulnerable servers
can be taken over.

By exploiting these unsafe dangling records, adversaries can manipulate the targeted resources
in the DNS RRs and take over the domains that are not under their control.

3 PUBLIC HOSTING SERVICE AND STUDY SCOPE
3.1 Public Hosting Service
Because of their scalability, reliability, and security, public hosting platforms have become an
attractive option for deploying Internet applications. Statistics show that over 1.7M domains have
deployed websites using hosting platforms [17]. We simplify the steps for hosting a custom domain
on a platform in Figure 1(a). Assume a customer, Alice, subscribes to a hosting service and attempts
to add her domain, custom.alice.com, to the platform (➀). The platform must first validate that
Alice is the domain owner (i.e., domain ownership validation). To enable this, Alice must configure
a challenge token temporarily issued by the provider, such as by creating a TXT record on the
authoritative server (➁). After verifying the challenge record (➂), the platform will allocate network

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

Detecting and Measuring Security Risks of Hosting-Based Dangling Domains 9:5

Fig. 1. Procedures of domain hosting and threat model of hosting-based domain takeover.

resources known as service endpoints to serve Alice’s domain (➃). Endpoints could be name servers,
IP addresses, or subdomains under the apex domains controlled by the platform. Assuming the
platform assigns a CNAME endpoint (e.g., custom-alice.service.com) to custom.alice.com, it
will then begin delivering content using its resource pool (➅) after confirming that the CNAME record
exists (➄). It indicates the domain connection is successful.
Domain ownership validation (DOV). The person who registers a domain name is the domain
owner and can manage the domain’s authoritative server. Customers can claim domain ownership
on a hosting platform in two ways. (i) DNS-based verification: providers generate a challenge token
and ask customers to configure it in a DNS record (e.g., CNAME or TXT). (ii) Web-based verification:
providers ask customers to upload a file containing a challenge token to a certain directory on the
website. Many Internet services now demand valid domain ownership, but there are no standard
practices [55].
Domain connection. We refer to the processes ➃ and ➄ as domain connection for simplicity.
Customers must update their DNS servers by adding DNS RRs pointing to the assigned endpoints.
Common connection methods include (i) delegating custom domains to the given name servers via
NS records, (ii) pointing the domains to CNAMEs managed by the provider, (iii) creating A records
that point to the services’ IP pool, or (iv) combining the aforementioned methods.

3.2 Our Study Scope: Hosting-based Domain Takeover
Threat model. We focus on the threat model that attackers try to take over victim domains by
exploiting vulnerable public hosting services. In the following, wewill refer to this threat as “hosting-
based domain takeover" and relevant dangling domains as 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 . Attackers can manipulate the
endpoints of the victim domains by deploying a new service on vulnerable platforms.
Definition of vulnerable service. In practice, providers may combine DOV and domain

connection into a single validation step, such as assigning unique endpoints to different customers
rather than verifying the presence of challenge tokens via an additional step. They choose endpoints
at random from a pool to ensure that each customer has a unique allocation. Then the customer
who successfully connects a custom domain to the given endpoints is considered the domain owner.

In this situation, a hosting service is considered vulnerable to domain takeover if its DOV and
domain connection methods are flawed. We categorize the flaws into three groups. First, there is
no DOV for a hosted domain. Second, the employed DOV strategies can be bypassed. Third, the
platform performs DOV by allocating random endpoints and requesting customers to point domains
to them, however, attackers may apply the same endpoints as victims to pass DOV (this is known
as endpoint collision). For example, if the platform chooses endpoints from a small candidate pool,
attackers may perform endpoint collisions by simply creating many accounts. Attackers can claim

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

9:6 Mingming Zhang et al.

Table 1. Comparison of representative work.

Paper/Report Service Discovery DNS Lookup # Vulnerable Services Detection Efficiency # 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡

Liu et al. [48] manual active 9 low 467
Squarcina et al. [58] [36, 48] active 17 low 1,260
HostingChecker PDNS passive 65 high 10,351

ownership of any domain on a public platform and manipulate it by abusing the aforementioned
weaknesses.

Attack steps. Figure 1(b) illustrates the threat model. If Alice unsubscribes from a third-party
service without purging CNAME records, her custom domain, custom.alice.com, becomes dan-
gling. Assuming the platform’s DOV is misconfigured (➁), an attacker, Mallory, can manipulate
Alice’s domain (➀) by applying the same endpoints for domain connection (➂). After passing the
CNAME check (➃), the provider begins offering services to Mallory (➄). Mallory can then take
over custom.alice.com and manipulate its resources, such as building phishing websites.
Real-world examples. Researchers discovered hundreds of Microsoft subdomains that might be
taken over [2]. For example, if a custom domain name has a dangling CNAME record pointing to a
non-existent subdomain under azurewebsites.net, an adversary can claim the ownership of that
domain and launch any services via the Microsoft Azure portal platform.

3.3 Comparison with Related Work
According to published research, domain takeovers can occur due to three factors: (i) Weak security
policies adopted by domain registrars/registries (e.g., Risky BIZness [20], domain sinkhole [30],
and lame delegations [19]); (ii) Flaws in protocol design and implementation (e.g., orphan DNS
servers [45], ghost domains [44], and phoenix domain [47]); (iii) Dangling DNS records. A dangling
record occurs when a domain name points to an expired domain [48, 58, 59], a discontinued hosting
service [48, 58], or a deprovisioned cloud instance [29].

Dangling DNS records caused by discontinued hosting services are the topic of this study, and the
most relevant works are given in Table 1. Liu et al. proposed the threat model of domain takeover
that abuse different types of dangling DNS records. They tested the threat on 1M apex domains and
57k subdomains of 14k apexes [48]. Squarcina et al. explored the security implications of related
domains that are controlled by adversaries. They also empirically evaluated domain takeover threats
over 50k apexes and associated 26M subdomains [58]. Both studies used a one-time measurement
on a restricted number of target domains. Furthermore, they only performed ad hoc examinations
on a few vulnerable services (9 and 17, respectively). They did not aim to systematically study the
flaws in hosting provider policies that can be exploited to take over subdomains. Thus, the majority
of observed dangling domains were caused by expired domains and deprovisioned cloud instances.
Developing a practical detection system is also beyond the scope of their research. In addition to
𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 , Borgolte et al. investigated released cloud instances from two large cloud providers [29].
They discovered domains pointing to allocatable IP pools and demonstrated how expired domains
might be exploited to issue fraudulent SSL certificates.

Our research varies from previous work in two major respects. First, we systematically explore
the ecosystem of public hosting services in order to discover more exploitable services that can
assist in the detection of 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 . Existing work, however, was based solely on a few reported
cases [36, 43]. Second, we build an efficient and scalable system for detecting 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 on a wide
scale. Aside from being more efficient than prior techniques, HostingChecker provides greater
coverage of detected vulnerable domains and fewer false positives.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

Detecting and Measuring Security Risks of Hosting-Based Dangling Domains 9:7

Fig. 2. Examples of service endpoint names and endpoint patterns (red suffixes).

4 HOSTINGCHECKER: A DETECTION SYSTEM
4.1 Empirical Observations
Our high-level idea for detecting hosting-based domain takeover threats is straightforward: (i)
identify hosting services, and (ii) discover vulnerable domains hosted on discontinued services.

As for the first task, after reviewing public hosting services reported in previous studies [48], we
conclude that they exhibit special domain characteristics:
O1 Similar endpoint patterns. As illustrated in Figure 2, most services allow partially customiz-

able endpoint domains [13, 21, 24]. Here, <prefix> is either a custom domain or a unique iden-
tifier (e.g., user-defined labels, or platform-generated labels that are relevant to user accounts);
<service> and <region> represent service types and geolocation codes, which sometimes are
merged into one label; <vendor-domain> are base domains managed by providers. We use an
endpoint pattern to denote the longest endpoint suffix (i.e., <service>.<region>.<vendor-
domain>) that is designated to a specific hosting service.

O2 High domain dependency number (DN).We claim that a custom domain depends on an
endpoint domain if the former points to the latter via CNAME or NS RRs. In Figure 1, for
example, custom.alice.com depends on service.com. Additionally, the domain dependency
number (DN) of one endpoint pattern is defined as the number of apex custom domains that
depend on the pattern. For example, 𝐷𝑁 (𝑠𝑒𝑟𝑣𝑖𝑐𝑒.𝑐𝑜𝑚) is N in Figure 4. Given the large volume
of customers, endpoint patterns of public hosting providers have a large DN since they can be
depended on by numerous custom domains.

As for the second task, we find that vulnerable custom domains depend on the endpoint domains
that exhibit the fingerprints (e.g., HTTP 404) of service discontinuation. Fetching web pages directly
to validate fingerprints is error-prone, because many failures may trigger such notifications [64],
and detectors may be unable to retrieve web contents if the endpoint domains become NXDOMAINs.
To this end, we must inspect DNS settings (i.e., DNS records) to ensure that domains are hosted
on services. Because PDNS has seen historical DNS lookups, we can reconstruct DNS resolution
chains of detected domains. With this technique, we can enhance efficiency and reduce network
resource consumption compared to active DNS resolution methods utilized in [48, 58].
The domain characteristics of public hosting services and the DNS chains of detected domains

can be easily extracted from DNS traffic. It prompts us to automate our approach to hunting services
and discovering vulnerable domains using PDNS logs.

4.2 SystemWorkflow
In light of the above observations, we design a novel framework,HostingChecker, which leverages
a PDNS dataset to perform service discovery and vulnerable domain identification. Because PDNS
has been widely used in prior work [23, 29, 38, 39], we believe HostingChecker can be extended
with any PDNS dataset. Figure 3 depicts the architecture of HostingChecker.

In Part 1, as a preparation component, we design a semi-automated service discoverer with
four phases. First, the discoverer automatically harvests endpoint candidates that may belong

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

9:8 Mingming Zhang et al.

Fig. 3. Overview of HostingChecker modules. Step 1a, 1b, 2a, and 2b take PDNS as inputs and adopt the
passive method, and step 3c performs active network probes. The output domain patterns and fingerprints of
Part 1 are fed to the steps 2c and 2d.

to public hosting services based on O2 by calculating DN. Second, according to O1, it extracts
endpoint patterns from these candidates by constructing a novel Domain Suffix Tree. In this phase,
it traverses domains from the rightmost labels and merges those that have the same suffix. For
example, a.s3.service.com and b.s3.service.com will be merged as {a,b}.s3.service.com
and organized into a tree structure (Figure 5). The longest common suffixes are extracted as endpoint
patterns. Third, it identifies service types and examines hosting policies to detect vulnerabilities.
We can collect HTTP and DNS fingerprints indicating the discontinued vulnerable services during
these steps. Fourth, all vulnerable endpoint patterns and the fingerprints are fed into a 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡

detector.
The efficient 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 detector is illustrated in Part 2. It detects 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 by examining whether

a domain name depends on a vulnerable and discontinued service. Given some apex domains to
detect, the detector begins by gathering subdomains and DNS RRs from PDNS logs based on their
query volume. Then it reconstructs the subdomains’ DNS resolution chains by linking up DNS
RRs. The detector checks all names in the chains to determine if they match the endpoint patterns
obtained in Part 1, which indicates the domains are hosted on vulnerable services. Following
that, it probes the hosted domains and inspects their HTTP and DNS fingerprints, which we have
pre-acquired to detect a discontinued service. The system will generate a security warning if it
finds a 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 .

The system relies on PDNS as the only input in both modules, which can considerably enhance
detection coverage and efficiency. The methodology and technical details are described below.

4.3 Discovering Vulnerable Services
Challenges and solutions. We attempt to recognize hosting services from DNS traffic by leverag-
ing domain dependencies and special naming conventions. However, first, domain dependencies are
not limited to public hosting services. For example, Internet corporations have self-built load bal-
ancers whose edge nodes likewise serve many domains and have similar naming patterns. Second,
identical suffixes also appear in non-service domain names, like disposable domains used to convey
a “one-time-signal” [31], which need to be discarded. Third, most providers do not publicly release
their endpoint patterns that are extensively customized (e.g., containing service types and other
identifiers). Thus, it is tough to find all service endpoint patterns by matching regular expressions.

To address the above challenges, we first observe that private load balancers used by providers
have smaller DNs than public services, since they only serve the providers’ domains under 1 or few
apexes (Step 1). Second, because disposable domains are generated algorithmically (e.g., by using
hash values of the same length) and are commonly queried once, we consider only domains with
large query volumes to be service endpoints and exclude domains with fewer queries. Third, we

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

Detecting and Measuring Security Risks of Hosting-Based Dangling Domains 9:9

Fig. 4. Domain dependency (Step 1). Fig. 5. Extract endpoint patterns via a domain suffix tree (Step 2).

propose a novel domain suffix tree to flexibly extract endpoint patterns (Step 2). The major steps
are explained below.
Step 1: Finding service endpoint candidates. First, the discoverer extracts RRs (e.g., CNAME, NS,
and MX) from PDNS with domain names in their data fields. In detail, it checks data field format and
removes RRs containing wildcard domains, reverse DNS domains (e.g., 4.3.2.1.in-addr.arpa),
and illegal strings according to the standard [50]. It also filters RRs of disposable domains with a low
Daily Query Volume (DQV), the average query number of a domain within a day. The discoverer
then generates DNs for all data fields. It chooses endpoint candidates by comparing DNs to a
threshold, minimum DN (MinDN), that determines the popularity (i.e., the custom domain volume)
of selected services. If MinDN is large, only impactful services with a high amount of customers
can be evaluated; otherwise, the service vulnerabilities pose minimal security risks due to few
customers.
Step 2: Extracting endpoint patterns via a domain suffix tree. Note that we are unaware of the
domain suffix levels for service endpoints. Suffixes with the same levels may serve various services.
“s3.us-east-2.amazonaws.com” and “elb.us-east-2.amazonaws.com”, for example, respectively serve
Amazon S3 and AWS Elastic Load Balancing. To flexibly extract the longest suffix patterns for each
service’s endpoints, i.e., endpoint patterns, we build a Domain Suffix Tree (DST) and extract the
name groups that exhibit similar features.
Domain tree constructing. To begin with, we convert all endpoint names into a domain tree

structure. Figure 5 depicts a tree diagram and a transformation example for the domain, “www-
alice-com.us-east-1.service.com”. The tree has “.” as the root. Its child nodes in level 1 are TLDs (i.e.,
.com), followed by apex domains or eTLD+1 (i.e., service.com) in level 2, eTLD+2 in level 3, and so
on. Referring to Figure 5, each 𝑁𝑜𝑑𝑒𝑖 in node set 𝑁𝑜𝑑𝑒 has six attributes: (i) name: the endpoint
suffix name at the current level; (ii) suffixLevel: the label number of name; (iii) DN: dependency
number of name; (iv) subCount: the children node number 𝑘 (𝑘 ∈ N); (v) subList: the children’s
name list 𝐿; (vi) subEntropy: the Shannon entropy [66] of all 𝑙𝑖 in 𝐿, i.e., 𝐻 (𝐿) = −∑𝑘

𝑖=1 𝑝𝑖𝑙𝑜𝑔𝑝𝑖 ,
where 𝑝𝑖 denotes the proportion of each 𝑙𝑖 , and an entropy value denotes the randomness of a
children node.
Domain tree pruning. We traverse the domain tree and prune it from the bottom up using

a depth-first search (DFS) algorithm. We first remove all leaf nodes that represent FQDNs of all
endpoint domains. Then, for each𝑁𝑜𝑑𝑒𝑖 with a suffixLevel larger than 2 (i.e., subdomains beneath
apexes), wemerge𝑁𝑜𝑑𝑒𝑖 ’s children nodes if its DN, subCount and subEntropy reach thresholds. The
threshold for each parameter is adjusted as per the node level, outcomes, and empirical experience.
For example, the volume of domains pointing to “us-east-2.amazonaws.com” is larger than that
of“s3.us-east-2.amazonaws.com”, so the DN at level 4 should be smaller than at level 3. In addition,
user-specific prefixes are highly diverse, whereas provider-specific labels are in a relatively small
pool. As a result, subCount and subEntropy of the nodes representing the longest suffixes could
be significantly larger than those of their children nodes, leading to a large deviation in value. In
the end, we refer to the remaining tree as a DST, like the solid part in Figure 5. We extract all leaf
nodes in DST as endpoint patterns and aggregate those with the same parents.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

9:10 Mingming Zhang et al.

It should be noted that the operational experiences and concerns, such as parameter selection,
can be found in Appendix B.
Step 3: Identifying services and checking service vulnerabilities. In our threat model (Sec-
tion 3.2), attackers can only re-allocate the same endpoints as victims to perform domain takeovers
if the service endpoint pool is small. Hence, highly randomized endpoint domains, such as those
with high entropy hash values or algorithm-generated labels like DGA [65]), are not exploitable.
Based on this requirement, the discoverer employs Stringlifier [18], a popular open-source ML
model that identifies high-entropy or numeric strings, to automatically identify and filter out
random domains from the extracted endpoint patterns. Using this method, we can significantly
narrow down the candidate list, leaving only 995 endpoint patterns.

After that, we further determine the service types of the extracted endpoint patterns by directly
accessing their webpages and digging through search engines. Then we inspect their domain
connection and DOV policies, as mentioned in Section 3.1. We first review vendors’ operational
documentation and search for service setup tutorial videos to find the officially claimed domain
validation policies. If no instructions are found, we will register two test accounts for each platform,
connect one custom domain, and configure a service. We inspect whether account 1 (the attacker)
can deploy the domain deployed by account 2 (the victim) that has been discontinued.

In our experiment, we systematically explore the current practices adopted by hosting services.
Finally, we discover 65 vulnerable services and new vulnerabilities in domain connection policies.
The holistic characterization about services can be found in Section 6.1.
Step 4: Maintaining a comprehensive database for vulnerable services. When a hosting
service is discontinued, we observe that providers will reply to the client with distinctive responses.
These responses could be used as fingerprints to determine service status and detect 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 .
During our research, we summarize three types of useful fingerprints:

F1 DNS answers. Platforms may return customized DNS answers when a domain’s service
is cancelled. For example, platforms may resolve endpoint domains to a default alias (e.g.,
nx.aicdn.com) or a particular IP (e.g., 127.0.0.1). Alternatively, the endpoints become non-
existent (i.e., NXDOMAINs) if a service is discontinued and caches have expired.

F2 HTTP response headers. HTTP fingerprints are also essential for checking domain status.
Hosting platforms use default HTTP errors (e.g., “404 Not Found”) to signal that services are
unavailable. To distinguish service discontinuation from other failures, we extract specialized
HTTP headers from each service alongside status codes. For example, “<vendor-customized-
header>: Please double-check that you are using the correct url. If so, make sure it matches
your dashboard’s custom domain...” only displays when a domain is not hosted on the service.

F3 HTTP response bodies. Platforms could adopt default pages (e.g., an error page) with similar
HTML structures or notification sentences to convey the service status. As with previous
work [36], we can use typical contents (e.g., “This web app is stopped” and “NoSuchBucket”)
in web pages as fingerprints

In total, we keep a database of 110 DNS and HTTP fingerprints, which is by far the most compre-
hensive list. We will not present all fingerprints due to ethical concerns. These fingerprints, when
combined with exploitable endpoint patterns, can be used as the basis for 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 detection.

4.4 Detecting Hosting-based Dangling Domains
Collecting subdomain names. To detect 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 in the wild, it is essential to ensure the cov-
erage of collected subdomains and to keep track of newly appearing ones. However, prominent
organizations (e.g., Amazon [57] and Microsoft [24, 49]) may create plenty of subdomains and

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

Detecting and Measuring Security Risks of Hosting-Based Dangling Domains 9:11

constantly change domains when updating businesses. In addition, given the hierarchical autho-
rization structure, their domains may have many labels (e.g., region.console.aws.amazon.com).
Based on these facts, it is difficult to exhaust subdomains using brute-force scans or zone transfer
requests (AXFR), as earlier research did [48, 58]. Moreover, detection targets should not be biased
towards domains with specific usages or scenarios (e.g., enabling SSL), so certain public sources
(e.g., Censys, CT, and search engines) are insufficient for this need. In order to balance domain
coverage and enumeration efficiency, HostingChecker collects subdomains from passive DNS
traffic that contains frequently queried domains at the country level.
HostingChecker will preprocess the domains in PDNS by following steps. First, it removes

strings that do not comply with domain format requirements [50], such as the ones that contain
illegal characters, are not separated by dots, or do not end with eTLDs. Second, it removes any
temporarily constructed domains, such as those used for experiments, using a metric called Total
Query Volume (𝑇𝑄𝑉).𝑇𝑄𝑉 is the number of queries toward a domain since it first occurred. We use
𝑇𝑄𝑉 to reflect domain popularity. We notice 𝑇𝑄𝑉 shows a long tail, with most domains receiving
a modest number of queries and a handful receiving millions. Third, many subdomains containing
random strings (e.g., 0vkcr4be.example.com) have similar formats. They are generated in bulk
using algorithms (e.g., DGA) and resolve to the same targets [25]. To identify such names, the system
also employs Stringlifier as used in Section 4.3. It aggregates apex domains whose subdomains
contain “RANDOM_STRING” labels and chooses one of them as the representative for subsequent tests.
In addition, HostingChecker only needs to append the subdomains that are freshly observed in
PDNS logs between two detections to the original list to keep track of new subdomains for given
apexes.
Reconstructing DNS chains. In 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 detection, we consider checking DNS resolution chains
necessary for determining whether a domain is hosted on a service. The reason is that detectors
cannot retrieve web contents if target resources are unreachable (like F1 in Section 4.3). In this
process, HostingChecker employs a passive method, i.e., reconstructing DNS chains using PDNS
logs, to achieve high efficiency. It starts by extracting all DNS RRs from PDNS for a specific
subdomain. If a CNAME record occurs, it recursively queries the data field in an RR until an A, NS, or
MX record is found. As a result, one subdomain’s DNS chains are represented as a directed resolution
graph, as depicted in Figure 3. The reconstruction of DNS chains is finished locally on the database
in parallel, without sending network queries, thus improving efficiency. In Appendix A, we present
its pseudocode in Algorithm 2.
There are two key points in the reconstruction process. First, we must ensure the DNS records

we extract from PDNS still exist on authoritative name servers. We employ Daily Query Volume
(DQV), which represents the query volume of a DNS record for each day. It is a metric that measures
whether a record can be actively resolved. Typically, we can predefine a minimum DQV to handle
long-tail data in PDNS, such as records that are queried only once. Second, some DNS RRs (e.g.,
CNAMEs) may form a cyclic graph regarding domain dependency; however, they have different
lifetimes. Hence, we need to divide the cyclic dependency graph intomultiple directed acyclic graphs
(DAGs) if the RRs have no overlap in lifetimes. Otherwise, we must break the iterative process
when receiving a domain that has already been processed. Furthermore, we should terminate the
iterative queries for NS and MX RRs since they cannot create alias names [37].
Inspecting domain status and recognizing 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 . To confirm that a domain is hosted on
public services, HostingChecker will check its DNS settings to verify whether its DNS chain
matches any endpoint patterns in our database. It then requests the domains hosted on vulnerable
services and compares their fingerprints to those we’ve already acquired. Eventually, domains
whose fingerprints indicate discontinued services are classified as 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

9:12 Mingming Zhang et al.

5 IMPLEMENTATION AND EVALUATION
5.1 System Development
We implement HostingChecker in Golang and use goroutines to achieve parallel execution. We
deploy HostingChecker on a PDNS dataset managed by our industrial partner, a large security
company. During the experiments, we can only access their internal dataset using an experimental
token they provide at a limited rate, e.g., obtaining nomore than 10k items per query for subdomains
and 1k for DNS records. When HostingChecker is made available as a public service, it will run
on the Spark framework and execute SQL queries on the raw PDNS data more efficiently. Moreover,
HostingChecker can employ similar parameters (e.g., DN, TQV, and DQV) for different data
platforms. Appendix B provides practical guidance on parameter settings and key considerations.
Passive DNS dataset. To build HostingChecker as a practical service, we use a large-scale PDNS
dataset (like Farsight DNSDB [35] and Umbrella [9]). It is continuously collected from multiple
ISPs’ global public DNS resolvers for 114DNS, the largest DNS provider in China [6]. The raw data
is saved on the internal servers of the organization and is only available to authorized employees.
Researchers can access anonymized data after acquiring legal authority and agreeing to a privacy
policy.
The PDNS consists of around 600 billion unique DNS queries every day from 70M clients for

nearly 800M FQDNs. It covers 99.9% of popular domains in the Tranco Top 1M list. These FQDNs are
distributed across an average of 13M SLDs per day and cover 99.9% of IANA TLDs. The DNS queries
originate from telecom companies (e.g., China Telecom and Viettel Group), research institutions
(e.g., MIT and NUS), and large providers (e.g., Alibaba and Google). Compared to the dataset used
in previous work [9], our PDNS observes 4× more DNS requests per day than Umbrella and 6×
more FQDNs than [29]. We recognize that the PDNS has regional biases because it is not collected
from truly global vantage points. Nevertheless, these biases are inherent to all PDNS datasets. We
believe it is sufficient to reflect DNS queries for the world’s most popular domains.
To evaluate HostingChecker, we use PDNS logs spanning from Jan. 2021 to Jul. 2022. We

extract 7 data fields, including query name, query type, answer data, timestamp of first-seen and
last-seen (i.e., collecting time), client IP volume, and query volume aggregated by each FQDN.
These fields are unrelated to a specific person’s activities, and the dataset we process contains no
sensitive information (e.g., client IPs). We follow the best practices to use shared data [22] under
the supervision of authorized employees and senior security researchers.

5.2 Coverage
Subdomains. We collect 12,835,311 subdomains (before filtering by TQV) for Tranco top 1M
domains and 1,977,645 for the top 1k from PDNS. In order to demonstrate domain coverage, we
compare our results with those collected from other 34 data sources embedded by popular tools, i.e.,
amass [51] and subfinder [53]. However, it is widely acknowledged that enumerating subdomains
of Top-1M apexes is impractical [48]. Thus, we sample 1k apexes from each of the top 1k, 10k, 100k,
and 1M domain lists and use these 4k domains for comparison. Results show that our PDNS has
a high coverage in both apex domains and subdomains (Figure 14). Details of data sources and
domain coverage are presented in Appendix C. In addition, our subdomains are diverse in label
numbers, including domains used in particular scenarios, such as DGA domains or misconfigured
domains (Figure 15).
Vulnerable services. With the help of the service discoverer, our vulnerable service database
(Table 2), which contains endpoint patterns and fingerprints, is by far the most thorough. Previous
research, [48] and [58], analyzed domain takeover issues among 9 and 31 services, respectively (see
Table 1). Aside from publications, the security community also maintains public lists [36, 43] of

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

Detecting and Measuring Security Risks of Hosting-Based Dangling Domains 9:13

vulnerable services reported by contributors. In comparison, we have maintained more exploitable
services (with 34 newly discovered), which ensures that HostingChecker can behave better
than other systems in threat coverage. We will provide more details about vulnerable services
in Section 6.1.

5.3 Efficiency
To evaluate HostingChecker’s efficiency, we deploy it on an 8-core Intel Xeon machine with
16GB RAM, running Ubuntu 18.04 LTS. We use 100 goroutines to detect Tranco Top-1M sites’
subdomains. Results show that a complete detection takes 1 day and 24 minutes on average, and
DNS reconstruction takes only 13.9 hours. It should be noted that the detection efficiency of
HostingChecker can be optimized in real-world deployments. First, if HostingChecker runs
regularly, administrators simply need to obtain fresh FQDNs from incremental data rather than
traversing all historical PDNS traffic. Thus, the time required to collect subdomains can be shortened.
Second, the system can execute directly on a high-performance platform and process DNS data
locally rather than performing active network queries, so the time for building DNS chains is
negligible. We believe HostingChecker is efficient enough to complete a daily inspection of all
subdomains of the top 1M domains to timely detect potential threats.

We claim that HostingChecker outperforms existing methods in domain resolution efficiency.
As a comparison experiment, we attempt to resolve 227,645 domains that are subdomains under the
top 1k apexes obtained from our PDNS and Rapid7. We use a traditional DNS lookup tool (i.e., dig)
and a state-of-the-art tool (i.e., ZDNS [41]) for active queries and specify the same parameters for
each tool, including a 5-second timeout, 3 retries, and 5 levels of iteration depth, as well as default
values for other parameters. HostingChecker takes a half-hour to reconstruct the DNS chains for
these domains, according to the results. However, compared to HostingChecker, it takes almost
13× longer to use dig and 5× as long to use ZDNS. Though efficiency can be improved by increasing
concurrency, active DNS resolution consumes more network resources and may raise ethical risks.

5.4 Detection Accuracy
Because there is no ground truth for vulnerable domains, we can only evaluate detection accuracy
by manually verifying 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 samples and checking their fingerprints. Note that all items in the
fingerprint database (introduced in Section 4.3) have been double-checked and proven exploitable by
our analysts. Meanwhile, HostingChecker saves real-time fingerprints that are used to determine
service status during detection. For evaluating detection accuracy, we re-probe the fingerprints of
𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 samples and compare them to those captured in detection. If a 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 ’s fingerprint has
changed, we investigate further by visiting its homepages and checking if the relevant service’s
policies have been updated.
The 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 samples are selected in two ways. First, we select the top 20 vendors based on

service types, popularity, and domain connecting methods (as done in Section 6.1.4), and we check
all 3,165 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 related to these vendors. Second, we expand the tested domain list by randomly
sampling 2,000 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 hosted on less popular services.
At the evaluation time, we confirm 4,907 (95.0%) domains were vulnerable to domain takeover.

We then check the DNS settings of these domains through PDNS logs, finding 46.4% of all confirmed
𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 have removed dangling DNS records and eliminated the threats. It indicates that detection
results only reflect the domain status at detection time. We further try to figure out the reasons
for the remaining 5.0% false positives. We find they are mainly caused by the domain whitelist
maintained by the platforms. In detail, providers may prohibit adding domains they control to their
platforms; for example, we cannot add balancer.wixdns.net to Wix, despite the fact that such
domains can trigger the same fingerprints. However, because each provider’s whitelist is not public,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

9:14 Mingming Zhang et al.

we need to gather whitelisted domains from future measurements and remove them from detection
targets to reduce false positives.

5.5 Discussion
Limitations. First, our PDNS observes DNS queries toward resolvers located in China, which might
be biased due to their geo-location.While we acknowledge this limitation, our evaluation shows that
the dataset provides adequate coverage of domains (99.9% Tranco domains) and clients worldwide.
We believe the results derived from the dataset are representative. Second, the detection system will
unavoidably produce false negatives because not all services and domains can be observed from
PDNS. However, in comparison to previous results, we have discovered more services and detected
over eight times as many 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 , which is sufficient to assist the community in mitigating threats.
Third,HostingChecker is not a fully automated system. Manual inspection is required in checking
whether vendors update service policies and confirming fingerprint correctness, which determines
detection accuracy. We cannot precisely evaluate the update frequency of service policies and
fingerprints. However, the service policies did not change during our half-year experiments, and
we found that 31 reported services [36] remained vulnerable, implying that inspections do not need
to be undertaken frequently. We put the automated fingerprint determination to future work and
will collaborate with security companies to keep the fingerprints up to date.
Deployment scenarios and possible users. HostingChecker is highly scalable and adaptable
to any large-scale PDNS dataset (e.g., Farsight DNSDB [35]) or (daily) active DNS measurement
data (e.g., OpenINTEL [61] and RapidDNS [54]). We envision two user groups for deploying
HostingChecker. First, large domain registrars and public DNS providers that host vast volumes
of domains can gather DNS requests via their name servers. They can provide detection services
for customers by deploying HostingChecker. Second, prominent organizations, particularly large
Internet companies (e.g., Microsoft), may have numerous and complex subdomains. They can use
HostingChecker to detect vulnerable domains in time to avoid potential risks.

6 LARGE-SCALE MEASUREMENT AND ANALYSIS
6.1 Systematic Analysis of Hosting Services
Utilizing the service discoverer, we analyze most of the deployed hosting services from a real-world
traffic perspective. Additionally, we re-evaluate the popular services that have been reported as
vulnerable in the security community [36, 43]. Below, we describe all vulnerable services and
exploitable policies identified by HostingChecker.

6.1.1 Vulnerable services overview. As illustrated in Table 2, HostingChecker identifies 995
endpoint patterns and 165 hosting services, which belong to 88 public vendors. Out of the identified
services, 65 (39.4%) are vulnerable and 34 are newly reported by us. These vulnerable services
mainly cover cloud object storage (e.g., Alibaba OSS and Huawei OBS), CDN (e.g., Baidu and
Cloudflare), and website builders (e.g., Wix). We find that website builders dominate the share of
vulnerable services. They will pose a significant threat due to the fact that they are open to both
large companies and individual users. In addition, other hosting services (e.g., email hosting and
API management) are difficult to attack due to their sophisticated domain deployment policies.
They either require unique validation records (e.g., DMARC [46]) or do not apply to individual users.
We discover 4 vulnerable cases from these services, which is the lower bound result, and we
leave other services for future investigation. In particular, service dependencies can make secure
services exploitable again because hosting services can serve as backends for other production-line
services [56]. Baidu Object Storage, for instance, is exploitable since it allows users to host custom

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

Detecting and Measuring Security Risks of Hosting-Based Dangling Domains 9:15

Table 2. Discovered vulnerable hosting services.

Categories
Vendors # Endpoint Patterns # Services

All Vulnerable (%*) All Vulnerable (%*) All Vulnerable (%*)

Cloud Storage 7 7 (100.0%) 130 118 (90.8%) 12 9 (75.0%)
CDN 25 7 (28.0%) 247 31 (12.6%) 44 8 (18.2%)

Website Builders 51 40 (78.4%) 156 105 (67.3%) 60 44 (73.3%)
Others 27 4 (14.8%) 462 4 (0.9%) 49 4 (8.2%)

Newly discovered 55 19 (34.5%) 920 183 (19.9%) 125 34 (27.2%)
All 88 52 (59.1%) 995 258 (25.9%) 165 65 (39.4%)

* % is the fraction of the vulnerable value to the all value. Take CDNs for example, 18.2% (8/44) CDN
services are vulnerable, which belong to 28.0% (7/25) vendors and provide 12.6% (31/247) vulnerable
patterns.

domains by deploying its CDN, but the CDN does not perform domain validation. Such service
dependencies pose more threats, yet they are hard to detect in individual services.

6.1.2 Exploitable domain connecting methods. Public hosting providers employ diverse domain
connection methods, but most (7/9) of them are exploitable for domain takeover. Based on endpoint
types, we divide the current domain connection methods into three categories (Table 3):
• Connecting with CNAME records. When customers connect custom domains on a service, the
provider allows them to point domains to the service endpoints by CNAME RRs. The endpoints
comprise five types: 𝑀1 are fixed domains, i.e., all custom domains are hosted at the same
endpoints. 𝑀2 allows users to define domain prefixes, such as in the case of Figure 2, even
if the prefixes have been used by others before. 𝑀3 are different from 𝑀2 since customers
can only define new prefixes that are never used, i.e., the vendor will keep historical account
settings to prevent endpoint name conflicts.𝑀4 are selected from a candidate pool maintained
by the provider. Domains belonging to𝑀5 contain random strings to avoid conflicts.
• Changing nameservers. Similar to CNAMEs, customers can also configure NS RRs to host their
domains. This method contains two types: delegating domains to the fixed nameservers (𝑀6,
similar to𝑀1), or the ones selected from an NS pool (𝑀7, similar to𝑀4). For instance, Cloud-
flare [10], randomly provides two nameservers per customer (e.g., alice.ns.cloudflare.com
and bob.ns.cloudflare.com), and its pool contains thousands of candidates.
• Connecting with A records. Another method is directly pointing domains to the given IP
addresses, such as fixed IPs (𝑀8) or randomly selected IPs from an address pool (𝑀9).

We find most of these methods exploitable, as listed in Table 3. First, fixed endpoints (i.e.,𝑀1,𝑀6,
and𝑀8) are easily exploited as all custom domains (including 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡) are pointed to them. Second,
customized endpoints (𝑀2) are also exploitable if providers do not check whether they have been
used before. Attackers can directly exploit these two types of endpoints to manipulate the dangling
domains. Besides, if providers select endpoints from a small pool (e.g.,𝑀4,𝑀7, and𝑀9), attackers
have the chance to allocate the same endpoints to victims by creating multiple requests. However,
one-time CNAMEs (𝑀5 and𝑀3) are not vulnerable in theory, since they are generated randomly
for each account or cannot be reused. In total, we find 105 services vulnerable due to the flawed
connecting methods.

6.1.3 Flawed domain ownership validation. Although several providers implement domain owner-
ship validation (DOV) policies to mitigate domain takeover attacks, their implementations could be
flawed. In our experiments, we find that only 10 vendors have strict DOV policies. For usability

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

9:16 Mingming Zhang et al.

Table 3. Domain connecting methods for hosting 𝐷𝑢𝑠𝑒𝑟 .

Method Name Method description # Service Exploitable

CNAME

𝑀1 Point 𝐷𝑢𝑠𝑒𝑟 to fixed canonical domains 12
𝑀2 Point 𝐷𝑢𝑠𝑒𝑟 to any canonical domains customized by any users 70
𝑀3 Point 𝐷𝑢𝑠𝑒𝑟 to new canonical domains customized by new users 12 #
𝑀4 Point 𝐷𝑢𝑠𝑒𝑟 to the canonical domains allocated from a candidate pool 5 G#
𝑀5 Point 𝐷𝑢𝑠𝑒𝑟 to canonical domains containing newly generated random labels 47 #

NS 𝑀6 Point 𝐷𝑢𝑠𝑒𝑟 to fixed nameservers 1
𝑀7 Point 𝐷𝑢𝑠𝑒𝑟 to the nameservers allocated from a candidate pool 5 G#

IP 𝑀8 Point 𝐷𝑢𝑠𝑒𝑟 to fixed IPs 8
𝑀9 Point 𝐷𝑢𝑠𝑒𝑟 to the IPs allocated from a candidate pool 4 G#

- 𝐷𝑢𝑠𝑒𝑟 denotes custom domains. And we do not summarize validation methods using special records (e.g., DMARC).
 : exploitable, #: not exploitable, G#: exploitable via endpoint collisions.

Fig. 6. Four threat models of bypassing flawed DOV. Each gray and dashed box represents a validation step.

reasons, most vendors prevent customers from connecting to the same endpoints by increasing the
randomness of endpoint allocations. However, if the endpoint randomness is poor, attackers can
achieve endpoint collisions by registering multiple accounts to bypass the validation. In detail, we
uncover four new flaws (as depicted in Figure 6) that enable attackers to bypass DOV, affecting the
top 20 service vendors listed in Table 4.

• V1: Bypassing CNAME validation. Among the top 20 vendors, 18 implement DOV by assigning
a unique CNAME record to each customer, with 16 having implementation errors. As shown
in Figure 6 (V1), the assigned CNAME (i.e., alice.rAnD0m.service.com) is unique, but the
platform further resolves it to a fixed endpoint domain (i.e., cname-fix.service.com). The
problem is that if someone directly resolves a custom domain to the fixed CNAME, the platform
may also treat it as passing validation.
• V2: Bypassing TXT validation. Verifying a random TXT record is also common practice for
DOV. For instance, Cloudflare requires a customer to create a TXT record with a random value
for a domain, cloudflare-verify.example.com. However, it does not check whether a TXT
record is correct and will still pass DOV if a custom domain directly points to a Cloudflare
CNAME endpoint. Thus, attackers can exploit this vulnerability to take over arbitrary domains
that are abandoned or not hosted on Cloudflare, as shown in Figure 6 (V2).
• V3: Bypassing IP validation. Non-reassignable IP endpoints ensure that clients without domain
ownership cannot connect to the same IPs. However, some providers (e.g., WP Engine) select
IPs from a small pool (𝑀8 and𝑀9). In this case, attackers can repeatedly apply IP endpoints

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

Detecting and Measuring Security Risks of Hosting-Based Dangling Domains 9:17

Table 4. Top 20 mainstream vendors and their exploitable services.

Category Vendor Service
Connecting Vulnerable DOV

𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡
method* V1 V2 V3 V4

Alibaba OSS 𝑀2 ✓ - - - 86
Cloud Amazon Elasticbeanstalk 𝑀2 ✓ - - - 192
Strorage Huawei OBS 𝑀2 ✓ - - - 178

JD.COM OBS 𝑀2 ✓ - - - 51

CDN

Baidu BOS, CDN, BCH 𝑀2 ✓ - - - 1,309
Cloudflare CDN 𝑀2 ,𝑀7 ✓ ✓ - - 543
Fastly CDN 𝑀2 ✓ - - - 54
Tencent CDN 𝑀2 ✓ - - - 119

Duda Website Builder 𝑀1 ,𝑀8 ✓ - ✓ - 10
Jimdo Website Builder 𝑀1 ,𝑀7 ,𝑀8 ✓ - ✓ ✓ 5
Medium Blog 𝑀8 - - ✓ - 3
Netlify Website Builder 𝑀1 ,𝑀2 ,𝑀7 ,𝑀8 ✓ - ✓ ✓ 21
Shopify Website Builder 𝑀1 ,𝑀8 ✓ - ✓ - 34

Website Tilda Website Builder 𝑀9 - - ✓ - 4
Builder Tumblr Blog 𝑀1 ,𝑀8 ✓ - ✓ - 11

Unbounce Website Builder 𝑀5 ✓ - - - 212
Webflow Website Builder 𝑀1 ,𝑀8 ✓ - ✓ - 30
Wix Website Builder 𝑀4 ,𝑀7 ✓ - - ✓ 26

Wordpress Website Builder 𝑀3 ,𝑀6 ,𝑀8 ✗ - ✓ ✓ 27
WP Engine Website Builder 𝑀3 ,𝑀9 ✗ - ✓ - 12

* : The exploitable domain connecting methods adopted by the services.
- : Indicate they have not deployed the validation methods involved in each vulnerability.

using different accounts until they control the same IPs as domain owners’ and pass the
validation, as the model in Figure 6 (V3).
• V4: Bypassing NS validation. Similar to V3, providers could provide a small NS pool (𝑀7), so
attackers could apply the same NS endpoints. In addition, several platforms do not check
if a customer has configured the NSes allocated for him/her as long as the configured ones
are part of the NS pool. For instance, in Figure 6 (V4), customers should change the domain
nameserver to 𝑁𝑆𝑖𝑑1 to start a service on Wix. However, if a domain’s NS is set to 𝑁𝑆𝑖𝑑2, it
can still pass Wix’s validation.

6.1.4 Current practices of hosting services. To investigate how mainstream vendors implement
domain hosting policies, we select 20 vendors according to their popularity [8, 17], as illustrated in
Table 4. They control around 70%market share [62, 63] and provide all service categories and domain
connecting methods. For each service, we follow the checking steps mentioned in Section 4.3. After
confirming the vulnerabilities, we will create a harmless proof of concept (as recommended in [1])
to disclose the issues to service providers and domain owners. Then, we consider ethical issues and
delete all domains from the tested platforms. In conclusion, we confirm all of the top 20 hosting
vendors are exploitable and find they can affect 2,927 custom domains. Each of the vendors involves
at least one flawed domain validation method. Among these vendors, 12 are newly reported by us,
and 3 were reported as secure before, but we find new flaws in their DOV implementations.

6.2 Threats on High-profile Domain Names
6.2.1 Measurement targets. To investigate the prevalence of 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 , we use HostingChecker
to detect Tranco Top-1M apex domains, together with 9,808 .edu and 7,198 .gov apex domains
obtained from public lists [16, 32]. Table 5 illustrates our subdomain statistics and measurement
results. In total, we collect 11,446,359 subdomains from PDNS for all apexes. We then conduct 101
rounds of measurements on these subdomains, spanning from Dec. 16, 2021 to Jul. 28, 2022. Below,
we will discuss the main findings from the longitudinal measurements.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

Evelyn Zhang

9:18 Mingming Zhang et al.

Table 5. Statistics on measurement results.

Source # Apex
Subdomain (FQDN) # 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡

A. All B. Hosted (%)*1 C. Vul-hosted (%)*2 D. FQDN (%)* Apex

Tranco

1,000 455,123 22,403 (4.9%) 11,440 (51.1%) 3,717 (32.5%) 34
10,000 1,543,435 66,085 (4.3%) 28,490 (43.1%) 4,033 (14.2%) 110
100,000 4,663,882 161,083 (3.5%) 65,277 (40.5%) 8,064 (12.4%) 418

1,000,000 11,433,441 283,898 (2.5%) 114,002 (40.2%) 10,303 (9.0%) 2,058

.com 508,580 6,802,277 193,552 (2.8%) 96,131 (49.7%) 5,270 (5.5%) 1,406
.net 45,520 929,447 18,439 (2.0%) 11,626 (63.0%) 3,658 (31.5%) 56
.gov 7,198 24,713 2,218 (9.0%) 581 (26.2%) 5 (0.9%) 3
.edu 9,808 248,914 6,078 (2.4%) 3,054 (50.2%) 23 (0.8%) 16

Total 1,008,734 11,446,359 284,006 (2.5%) 114,063 (40.2%) 10,351 (9.1%) 2,096

1 Hosted represents FQDNs hosted on public services.
2 Vul-hosted represents FQDNs hosted on vulnerable public services.
* % is the fraction of the current value to the value in its adjacent left column. Take the first row for example, 4.9%
(22,403/455,123, i.e., B/A) FQDNs are hosted on public services, 51.1% (11,440/22,403, i.e., C/B) hosted domains deploy
vulnerable service, and 32.5% (3,717/11,440, D/C) vulnerable FQDNs are dangling.

6.2.2 Hosting-based dangling domains. A major finding is that the domain takeover threats caused
by hosting services are still prevalent. According to the total numbers in Table 5, HostingChecker
detects that 284,006 (2.5%) of all collected subdomains have ever been hosted at public services. We
find 40.2% of the hosted domains use vulnerable services, and we term them “vul-hosted domains”.
After checking fingerprints, HostingChecker finally confirms that 10,351 (9.1%) of the vul-hosted
ones have become 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 during our experiments. The 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 number is over eight times higher
than prior results.
Vulnerable TLDs. We find FQDNs under generic TLDs account for the majority of 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 , with
50.9% under .com and 35.3% under .net respectively. Moreover, we discover that vulnerable services
are already deployed by a significant portion of FQDNs under critical TLDs, such as 26.2% of hosted
.gov domains and 50.2% of hosted .edu domains. In particular, we detect 23 FQDNs under .edu
and 10 under .gov(.ccTLD) were vulnerable during our experiments. By manually checking, we
find most of them were hosted on Webflow, AWS Elastic Beanstalk, and Pantheon, which are online
website builders. Two subdomains of unc.edu and rice.edu were continuously exploitable for
over three months (the domain administrators have then solved the issues). This implies the need
for more proper management of subdomains by the government and university administrators to
prevent potential attacks.
Affected apex domains. Popular apex domains that prefer to host subdomains on third-party
services are especially vulnerable to domain takeover attacks. The 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 we detected belong to
2,096 apex domains, of which 2,058 are ranked in top 1M and 34 even in top 1k. The most vulnerable
subdomains are under bcebos.com (1,250 FQDNs), which belong to Baidu Object Storage. Such
cloud storage services enable users to access stored resources via vendor domains whose prefixes
can be customized.
By analyzing domain ranking, we find prominent organizations may create more subdomains

that are challenging to manage. Table 5 summarizes the subdomain numbers in various domain
ranking intervals, allowing us to approximate an average subdomain number for one apex. After
estimating, we discover that an apex in the top 1k has an average of 455 (455,123 divided by 1,000)
subdomains, while this number drops to 154 in the top 10k. In addition, according to column B,
we calculate the fraction of domains hosted on public servers across all subdomains. It shows
that higher ranked apexes have more hosted subdomains than lower ranked ones. Their massive
subdomains and businesses may be a mojor cause, since they need reliable third-party platforms to

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

Detecting and Measuring Security Risks of Hosting-Based Dangling Domains 9:19

Fig. 7. Weekly cumulative 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 results. Fig. 8. Threat caused by discovered 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 .

ensure security and stability. However, the services they select may have implementation flaws.
Aaccording to the percentages in column C, for example, more than half of the services utilized
by the top 1k domains are vulnerable, exposing their domains to threats (column D). In particular,
in terms of domain ranking, the number distribution of 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 is aligned with that of hosted
domains.

6.2.3 Indirect dangling domains and the expanded threats. Apart from customers’ domains, vulnera-
ble public services also endanger 18,253 domains that are not hosted on them. The reasons include:
(i) domains depend on vulnerable customer domains; or (ii) their owners configure wildcard DNS
RRs. For the first, if a domain A has a canonical name B that becomes a 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 , attackers can
indirectly control A after taking over B. We refer to domains like A as indirect dangling domains
(indirect 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡). In the measurements, we find 10 indirect 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 that point to 5 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 via
CNAME records. In order to assess the impact of indirect 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 , we further reverse-parse domain
names from PDNS that point to our discovered 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 and obtain an additional 18,057 affected
FQDNs. Such domain dependency makes it difficult to prevent attacks because domain owners of
indirect 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 are unaware of third-party services. As a supplement, we illustrate the threat scale
of indirect 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 in Appendix D (Figure 16).

As for the second reason, we find there are unsafe configurations of wildcard domains. In order to
use a hosting service, a customer may set wildcard domain records in DNS setups, such as pointing
*.example.com to the service’s CNAME endpoints. If the service uses a fixed endpoint (e.g.,𝑀1 in
Table 3) for validation, all subdomains in the wildcard domain will point to the same endpoint. In
this case, attackers can claim arbitrary subdomains on the platform and manipulate them. After
double-checking, we discover that at least 191 wildcard domains point to exploitable services.

6.2.4 Periodic detection findings. Figure 7 depicts the weekly cumulative results from our longitu-
dinal measurements. Starting from the second week, we notice an average of 270 new 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 per
week. There was an increase in the new 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 on January 13, 2022, as we added Baidu’s services
to the monitoring list. Meanwhile, the reason for the spike on March 31 is that some subdomains
hosted on Wix expired, and administrators then renewed them that week. By conducting regular
measurements, administrators can notify the owners of vulnerable names in time to foreclose on
potential threats. Further, we can gain more insights into domain takeover issues from a longitudinal
perspective.
Lifecycle of a hosting-based dangling domain. Routine detection can reflect how domains’
status changes over time. Figure 9 depicts the lifecycle of a 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 , where three time points are
highlighted. 𝑇ℎ is when a custom domain is hosted on a vulnerable service. Then, if the service is
discontinued, the domain can become a 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 at 𝑇𝑠 . After that, its threat status may end at 𝑇𝑒 for
reasons of service renewals or DNS record updates. Based on these states, we define two durations
to analyze the (dis)appearance of a 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 .

Pre-vulnerable duration (𝛿𝑝𝑟𝑒). To begin, we ask when a domain will become dangling after being
hosted on a service. To answer the question, we propose a metric called pre-vulnerable duration,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

9:20 Mingming Zhang et al.

Fig. 9. Lifecycle of a 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 .

Percentage
Fig. 10. Distribution of pre-vulnerable duration. Fig. 11. Distribution of vulnerable duration.

𝛿𝑝𝑟𝑒=𝑇𝑠 -𝑇ℎ . In our experiments, we see the full 𝛿𝑝𝑟𝑒 of 1,793 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 . As per Figure 10, we find that
nearly 50% of domains have a 𝛿𝑝𝑟𝑒 ranging from 10 to 30 days. A possible reason is that many
services offer a short-term (e.g., 2 weeks) free trial for newcomers [7, 14]. A 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 arises if a
customer starts a temporary trial on a public service but does not proceed with the subscription
and forgets to purge DNS settings.
Vulnerable duration (𝛿𝑣𝑢𝑙). Second, we can track each 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 ’s vulnerable duration, 𝛿𝑣𝑢𝑙=𝑇𝑒 -𝑇𝑠 ,

which represents the threat’s time period. We divide 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 into four types depending on their
𝛿𝑣𝑢𝑙 : We have observed both 𝑇𝑠 and 𝑇𝑒 of 𝐷1 (77.0%), and only 𝑇𝑠 of 𝐷2 (22.8%); 𝐷3 (0.2%) is found
to be vulnerable since our first scan, and ends its vulnerable state in the middle of measurements;
𝐷4 represents a domain that is continuously dangling; however, we discovered that no 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡

belongs to this type. By analyzing the 𝛿𝑣𝑢𝑙 of all detected 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 , we find the threat can persist for
a long time. We mainly use 𝐷1 for this analysis since we have recorded their entire threat duration.
Figure 11 presents the empirical cumulative distribution of 𝐷1’s 𝛿𝑣𝑢𝑙 . It shows only 17.0% 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡

immediately disappeared within one day after being found dangling. However, nearly 60% have
been vulnerable for a long time, i.e., ≥ 5 days, and 36.3% have even lasted longer than a month.
This implies domain owners are rarely aware of such dangling domains and will probably not take
proactive actions to fix them, leaving a wide time window for attackers.
Threat implication of 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 . As further analysis, we attempt to quantify the real-world threat
posed by 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 , which remained vulnerable for several days. We use PDNS to estimate (i) the
number of client IPs and (ii) the number of times the dangling domains were queried once they
became vulnerable. We find 45.5% of all 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 still receive traffic from over 70 million client IPs,
though their services were discontinued. It means that a large volume of clients are exposed to
domain takeover threats. Figure 8 depicts the number of affected client IPs and the overall access
volume during each 𝛿 per domain. It reveals that 43 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 affect millions or even tens of millions
of clients, and 364 have been accessed at least a million times. This significant impact is evidence
that timely and comprehensive detection of 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 is imperative.

7 DISCUSSION
Best practices for hosting services. As per our analysis, we conclude that the following strate-
gies are recommended practices that can prevent the threat. First, providers must perform strict
domain ownership validation using standard procedures [40], rather than simply checking domain
connections that use reassignable endpoints. For instance, providers can set one-time tokens or
random values in the TXT records [42]. Second, providers must avoid potential endpoint collisions

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

Detecting and Measuring Security Risks of Hosting-Based Dangling Domains 9:21

for various accounts. When users deploy custom domains, providers should provide non-collidable
endpoints from both the account and domain perspectives. They could choose at random from a
large candidate pool. Third, providers should record all historical user-defined labels or hosted
domains together with the relevant accounts, in case attackers can easily customize the same end-
point names as victims. Fourth, it is recommended to send security alerts to customers, including
but not limited to service expiration and the use of wildcard DNS records.

Although the solutions are straightforward, our findings indicate that providers’ domain hosting
strategies vary. We contact hosting providers in order to understand the causes of poor implemen-
tations. First, they claim that implementing these validation policies in the production environment
is complex and may affect the usability of services. To balance security and usability, they employ
various simplified solutions (e.g., using a small endpoint pool), which we have shown can be
bypassed. However, our research demonstrates the threat’s impact remains pervasive and requires
further mitigation. Second, some providers believe that solving this problem relies on deleting
dangling records by customers. However, from an operational standpoint, it is unfeasible for the
majority of users to be security-aware and manage their records well. Hence, we believe that
public providers should take responsibility for minimizing security threats in order to improve
ecosystem security. Along with validation during the domain connection phase, platforms should
also perform critical checks in the exit phase (e.g., service destruction) and inform customers if
configured resources are not purged.
Ethical considerations.We take full consideration of ethics based on the Menlo Report [27]. First,
we use controlled accounts and domains to test public services. We follow responsible disclosure
guidelines [1] when disclosing issues to vendors and domain owners. Second, similar to earlier
papers [38], we use a PDNS dataset to explore real-world implications. With respect to people,
we do not use personally sensitive information like client IPs, nor do we associate DNS traffic
with specific individuals. We never investigate information exposed in domain strings. More data
collection and processing details are discussed in Section 5. Third, for large-scale measurements, we
deploy HostingChecker on infrastructure managed by a security company and limit the scanning
rate to minimize the impact on real-world servers. Furthermore, since we do not perform active
DNS queries, there is no influence on the DNS ecosystem.
Responsible disclosure. We have reported newly discovered vulnerabilities to affected vendors.
So far, 10 service vendors have confirmed the issues. Amazon, Huawei, Duda, and Jimdo have
acknowledged the issues and are working to find solutions. Baidu confirmed the vulnerability and
awarded us a bounty. Baidu, Tencent, and Unbounce have added and SXL plans to add random TXT
validation for DOV to mitigate the issue. Cloudflare and Netlify acknowledged the issue and decided
there were no direct security implications for their vendors through the HackerOne platform (cite:
hackeroneplatform). The other vendors asked for vulnerability details, and we are still waiting for
further responses. In addition, since it is difficult to obtain the contacts of domain owners due to the
anonymity of WHOIS data, we only report issues to the administrators of several popular domains.
In the end, 16 domain owners have removed dangling DNS records after confirming our reports,
including the examples present in the paper and subdomains under aids.gov, stanford.edu,
nobelprize.org, and asus.com.
Detection service for research. To help detect dangling domains, we provide the system as a
service for research purposes. Researchers that are interested in the service can gain access by
visiting https://sites.google.com/view/hostingchecker. Considering ethics and avoiding abuse, we
will only provide detailed detection reports to domain owners. After strict identity verification,
domain owners can check whether their subdomains are hosted on flawed third-party services and
thus can be taken over.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

https://sites.google.com/view/hostingchecker

9:22 Mingming Zhang et al.

8 CONCLUSION
This paper introduces a highly efficient detection framework,HostingChecker, to comprehensively
measure the prevalence of hosting-based dangling domains. Leveraging large-scale passive DNS
traffic, HostingChecker can spotlight hosting services, harvest exhaustive subdomains, and
efficiently reconstruct domain dependency chains. Through significant efforts to analyze hosting
services, we identify a number of vulnerable services and feasible fingerprints for 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 detection.
Periodic experiments and longitudinal measurements are conducted in order to monitor dangling
domains in the wild. By leveraging HostingChecker, we find more vulnerable services and detect
over 10k 𝐷𝑣𝑢𝑙ℎ𝑜𝑠𝑡 that can be taken over. Our findings highlight the need for more research efforts
on better service practices and remediation of domain takeover risks, especially for public hosting
services.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd, Gareth Tyson, for their valuable comments
to improve the paper, and our industry partners for their support. This research is supported in
part by the National Natural Science Foundation of China (62102218, U1836213, U19B2034, and
62272265). Yiming Zhang is partially supported by the Shuimu Tsinghua Scholar Program.

REFERENCES
[1] 2018. HackerOne: A Guide To Subdomain Takeovers. https://www.hackerone.com/application-security/guide-

subdomain-takeovers.
[2] 2020. 670+ Subdomains of Microsoft are Vulnerable to Takeover. https://vullnerability.com/blog/microsoft-subdomain-

account-takeover.
[3] 2020. American News Site’s Subdomains Left Open for Takeover. https://www.wizcase.com/blog/cbslocal-vulnerabilty-

research/.
[4] 2021. Alibaba Cloud. https://www.alibabacloud.com/.
[5] 2021. Amazon Web Services. https://aws.amazon.com/.
[6] 2022. 114 DNS. https://www.114dns.com/
[7] 2022. 14 Day Trial Period Policy for Premium Plans. https://support.wix.com/en/article/14-day-trial-period-policy-

for-premium-plans.
[8] 2022. CDN Usage Distribution in the Top 1 Million Sites. Retrieved May 20, 2022 from https://trends.builtwith.com/cdn
[9] 2022. Cisco Umbrella Passive DNS. https://docs.umbrella.com/investigate/docs/passive-dns.
[10] 2022. Cloudflare. https://www.cloudflare.com/.
[11] 2022. GoDaddy. https://www.godaddy.com/.
[12] 2022. Internet hosting service. https://en.wikipedia.org/wiki/Internet_hosting_service.
[13] 2022. Public Suffix List. https://publicsuffix.org/
[14] 2022. Shopify. https://shopify.com/.
[15] 2022. Tranco List. Retrieved Dec. 14, 2021 from https://tranco-list.eu/
[16] 2022. University Domains and Names Data List. https://github.com/Hipo/university-domains-list
[17] 2022. Web Hosting Usage Distribution in the Top 1 Million Sites. Retrieved May 20, 2022 from https://trends.builtwith.

com/hosting
[18] Adobe. 2022. Stringlifier. https://github.com/adobe/stringlifier.
[19] Gautam Akiwate, Mattijs Jonker, Raffaele Sommese, Ian D. Foster, Geoffrey M. Voelker, Stefan Savage, and KC Claffy.

2020. Unresolved Issues: Prevalence, Persistence, and Perils of Lame Delegations. In IMC ’20: ACM Internet Measurement
Conference, Virtual Event, USA, October 27-29, 2020. ACM, 281–294. https://doi.org/10.1145/3419394.3423623

[20] Gautam Akiwate, Stefan Savage, Geoffrey M. Voelker, and KC Claffy. 2021. Risky BIZness: Risks Derived from
Registrar Name Management. In Proceedings of the 21st ACM Internet Measurement Conference (Virtual Event) (IMC
’21). Association for Computing Machinery, New York, NY, USA, 673–686. https://doi.org/10.1145/3487552.3487816

[21] Alibaba Cloud. 2022. Regions and endpoints. https://www.alibabacloud.com/help/en/doc-detail/31837.htm.
[22] Mark Allman and Vern Paxson. 2007. Issues and etiquette concerning use of shared measurement data. In Proceedings

of the 7th ACM SIGCOMM Internet Measurement Conference, IMC 2007, San Diego, California, USA, October 24-26, 2007,
Constantine Dovrolis and Matthew Roughan (Eds.). ACM, 135–140. https://doi.org/10.1145/1298306.1298327

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

https://www.hackerone.com/application-security/guide-subdomain-takeovers
https://www.hackerone.com/application-security/guide-subdomain-takeovers
https://vullnerability.com/blog/microsoft-subdomain-account-takeover
https://vullnerability.com/blog/microsoft-subdomain-account-takeover
https://www.wizcase.com/blog/cbslocal-vulnerabilty-research/
https://www.wizcase.com/blog/cbslocal-vulnerabilty-research/
https://www.alibabacloud.com/
https://aws.amazon.com/
https://www.114dns.com/
https://support.wix.com/en/article/14-day-trial-period-policy-for-premium-plans
https://support.wix.com/en/article/14-day-trial-period-policy-for-premium-plans
https://trends.builtwith.com/cdn
https://docs.umbrella.com/investigate/docs/passive-dns
https://www.cloudflare.com/
https://www.godaddy.com/
https://en.wikipedia.org/wiki/Internet_hosting_service
https://publicsuffix.org/
https://shopify.com/
https://tranco-list.eu/
https://github.com/Hipo/university-domains-list
https://trends.builtwith.com/hosting
https://trends.builtwith.com/hosting
https://github.com/adobe/stringlifier
https://doi.org/10.1145/3419394.3423623
https://doi.org/10.1145/3487552.3487816
https://www.alibabacloud.com/help/en/doc-detail/31837.htm
https://doi.org/10.1145/1298306.1298327

Detecting and Measuring Security Risks of Hosting-Based Dangling Domains 9:23

[23] Eihal Alowaisheq, Siyuan Tang, Zhihao Wang, Fatemah Alharbi, Xiaojing Liao, and XiaoFeng Wang. 2020. Zombie
Awakening: Stealthy Hijacking of Active Domains through DNS Hosting Referral. In CCS ’20: 2020 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event, USA, November 9-13, 2020, Jay Ligatti, Xinming
Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM, 1307–1322. https://doi.org/10.1145/3372297.3417864

[24] Amazon. 2022. AWS service endpoints. Retrieved July 22, 2022 from https://docs.aws.amazon.com/general/latest/gr/
rande.html

[25] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime Cochran, Zakir Durumeric, J. Alex
Halderman, Luca Invernizzi, Michalis Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher,
Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. 2017. Understanding the Mirai Botnet. In Proceedings of the
26th USENIX Security Symposium (USENIX Security ’17).

[26] AWS Elastic Beanstalk. 2022. Your Elastic Beanstalk environment’s Domain name. https://docs.aws.amazon.com/
elasticbeanstalk/latest/dg/customdomains.html.

[27] M. Bailey, E. Kenneally, D. Maughan, and D. Dittrich. 2012. The Menlo Report. IEEE Security & Privacy 10, 02 (mar
2012), 71–75. https://doi.org/10.1109/MSP.2012.52

[28] David Bisson. 2017. Hacker defaces Donald Trump fundraising site via subdomain takeover attack. (2017).
[29] Kevin Borgolte, Tobias Fiebig, Shuang Hao, Christopher Kruegel, and Giovanni Vigna. 2018. Cloud Strife: Mitigating

the Security Risks of Domain-Validated Certificates. In 25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-21, 2018. The Internet Society. http://wp.internetsociety.org/ndss/wp-
content/uploads/sites/25/2018/02/ndss2018_06A-4_Borgolte_paper.pdf

[30] Guy Bruneau. 2010. DNS Sinkhole. SANS White Paper (Aug 2010). https://www.sans.org/white-papers/33523/
[31] Yizheng Chen, Manos Antonakakis, Roberto Perdisci, Yacin Nadji, David Dagon, and Wenke Lee. 2014. DNS Noise:

Measuring the Pervasiveness of Disposable Domains in Modern DNS Traffic. In 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2014, Atlanta, GA, USA, June 23-26, 2014. IEEE Computer Society,
598–609. https://doi.org/10.1109/DSN.2014.61

[32] CISA. 2022. Official .gov Domain List. https://github.com/cisagov/dotgov-data
[33] Dave Crocker, Tony Hansen, and Murray Kucherawy. 2011. RFC 6376: DomainKeys Identified Mail (DKIM) Signatures

(Internet Standard). https://tools.ietf.org/html/rfc6376. (2011).
[34] Detectify. 2022. Subdomain takeovers are on the rise and are getting harder to monitor. https://blog.detectify.com/

2022/03/22/subdomain-takeover-on-the-rise-detectify-research/. (2022).
[35] DNSDB 2022. Passive DNS historical internet database: Farsight DNSDB. Retrieved July 18, 2022 from https://www.

farsightsecurity.com/solutions/dnsdb/
[36] EdOverflow. 2022. Can I take over XYZ. https://github.com/EdOverflow/can-i-take-over-xyz. Last accessed: May. 12,

2022.
[37] Robert Elz and Randy Bush. 1997. Clarifications to the DNS Specification. RFC 2181. https://doi.org/10.17487/RFC2181
[38] Farsight Security. 2022. Research using Farsight DNSDB. Retrieved Apr 20, 2022 from https://www.farsightsecurity.

com/research/
[39] Pawel Foremski, Oliver Gasser, and Giovane C. M. Moura. 2019. DNS Observatory: The Big Picture of the DNS. In

Proceedings of the Internet Measurement Conference, IMC 2019, Amsterdam, The Netherlands, October 21-23, 2019. ACM,
87–100. https://doi.org/10.1145/3355369.3355566

[40] CA/Browser Forum. 2022. Baseline Requirements for the Issuance and Management of Publicly-Trusted Certificates,
Version 1.8.4. https://cabforum.org/baseline-requirements-documents/.

[41] GitHub. 2020. ZDNS: Fast CLI DNS Lookup Tool. Retrieved July 14, 2022 from https://github.com/zmap/zdns
[42] Github Pages. 2022. Verifying your custom domain for GitHub Pages. https://docs.github.com/en/pages/configuring-a-

custom-domain-for-your-github-pages-site/verifying-your-custom-domain-for-github-pages.
[43] HackerOne 2022. Hacktivity: subdomain takeover. Retrieved May. 12, 2022 from https://hackerone.com/hacktivity?

querystring=subdomain%20takeover
[44] Jian Jiang, Jinjin Liang, Kang Li, Jun Li, Hai-Xin Duan, and Jianping Wu. 2012. Ghost Domain Names: Revoked Yet

Still Resolvable. In 19th Annual Network and Distributed System Security Symposium, NDSS 2012, San Diego, California,
USA, February 5-8, 2012. The Internet Society. https://www.ndss-symposium.org/ndss2012/ghost-domain-names-
revoked-yet-still-resolvable

[45] Andrew J Kalafut, Minaxi Gupta, Christopher A Cole, Lei Chen, and Nathan E Myers. 2010. An empirical study of
orphan DNS servers in the internet. In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement.
308–314.

[46] Murray Kucherawy and Elizabeth Zwicky. 2015. RFC 7489: Domain-based Message Authentication, Reporting, and
Conformance (DMARC) (Informational). https://tools.ietf.org/html/rfc7489. (2015).

[47] Xiang Li, Baojun Liu, Xuesong Bai, Mingming Zhang, Qifan Zhang, Zhou Li, Haixin Duan, and Qi Li. 2023. Ghost
Domain Reloaded: Vulnerable Links in Domain Name Delegation and Revocation. In Proceedings of the 30th Annual

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

https://doi.org/10.1145/3372297.3417864
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customdomains.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customdomains.html
https://doi.org/10.1109/MSP.2012.52
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_06A-4_Borgolte_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_06A-4_Borgolte_paper.pdf
https://www.sans.org/white-papers/33523/
https://doi.org/10.1109/DSN.2014.61
https://github.com/cisagov/dotgov-data
https://tools.ietf.org/html/rfc6376
https://blog.detectify.com/2022/03/22/subdomain-takeover-on-the-rise-detectify-research/
https://blog.detectify.com/2022/03/22/subdomain-takeover-on-the-rise-detectify-research/
https://www.farsightsecurity.com/solutions/dnsdb/
https://www.farsightsecurity.com/solutions/dnsdb/
https://github.com/EdOverflow/can-i-take-over-xyz
https://doi.org/10.17487/RFC2181
https://www.farsightsecurity.com/research/
https://www.farsightsecurity.com/research/
https://doi.org/10.1145/3355369.3355566
https://cabforum.org/baseline-requirements-documents/
https://github.com/zmap/zdns
https://docs.github.com/en/pages/configuring-a-custom-domain-for-your-github-pages-site/verifying-your-custom-domain-for-github-pages
https://docs.github.com/en/pages/configuring-a-custom-domain-for-your-github-pages-site/verifying-your-custom-domain-for-github-pages
https://hackerone.com/hacktivity?querystring=subdomain%20takeover
https://hackerone.com/hacktivity?querystring=subdomain%20takeover
https://www.ndss-symposium.org/ndss2012/ghost-domain-names-revoked-yet-still-resolvable
https://www.ndss-symposium.org/ndss2012/ghost-domain-names-revoked-yet-still-resolvable
https://tools.ietf.org/html/rfc7489

9:24 Mingming Zhang et al.

Network and Distributed System Security Symposium (NDSS ’23). https://doi.org/10.14722/ndss.2023.23005
[48] Daiping Liu, Shuai Hao, and Haining Wang. 2016. All Your DNS Records Point to Us: Understanding the Security

Threats of Dangling DNS Records. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016, Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi (Eds.). ACM, 1414–1425. https://doi.org/10.1145/2976749.2978387

[49] Microsoft. 2022. Reference list of Azure domains (not comprehensive). Retrieved July 22, 2022 from https://docs.microsoft.
com/en-us/azure/security/fundamentals/azure-domains

[50] Mockapetris, Paul V. 1987. RFC 1034: Domain Names - Concepts And Facilities (Standard). RFC (1987). https:
//datatracker.ietf.org/doc/html/rfc1034

[51] OWASP. 2022. amass. https://owasp.org/www-project-amass/.
[52] PCWorld. 2015. Lenovo, Google websites hijacked by DNS attacks. https://www.pcworld.com/article/432090/like-

google-in-vietnam-lenovo-tripped-up-by-a-dns-attack.html.
[53] projectdiscovery. 2022. subfinder. https://github.com/projectdiscovery/subfinder.
[54] RapidDNS. 2022. Rapid DNS Information Collection. https://rapiddns.io/.
[55] Shivan Kaul Sahib, Shumon Huque, and Paul Wouters. 2022. Survey of Domain Verification Techniques using

DNS. Internet-Draft draft-ietf-dnsop-domain-verification-techniques-00. Internet Engineering Task Force. https:
//datatracker.ietf.org/doc/draft-sahib-domain-verification-techniques/03/ Work in Progress.

[56] Said Jawad Saidi, Srdjan Matic, Oliver Gasser, Georgios Smaragdakis, and Anja Feldmann. 2022. Deep Dive into the
IoT Backend Ecosystem. CoRR abs/2209.09603 (2022). https://doi.org/10.48550/arXiv.2209.09603 arXiv:2209.09603

[57] SecurityTrails. 2022. amazon.com subdomains. Retrieved July 22, 2022 from https://securitytrails.com/list/apex_
domain/amazon.com

[58] Marco Squarcina, Mauro Tempesta, Lorenzo Veronese, Stefano Calzavara, and Matteo Maffei. 2021. Can I Take Your
Subdomain? Exploring Same-Site Attacks in the Modern Web. In 30th USENIX Security Symposium (USENIX Security
21). USENIX Association, 2917–2934. https://www.usenix.org/conference/usenixsecurity21/presentation/squarcina

[59] Shir Tamari and Ami Luttwak. 2021. A New Class of DNS Vulnerabilities Affecting Many DNS-as-Service Plat-
forms. https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-A-New-Class-Of-DNS-Vulnerabilities-Affecting-
Many-DNS-As-Service-Platforms.pdf.

[60] The Wall Street Journal. 2015. Cybercriminals Are Misappropriating Businesses’ Web Addresses. https://www.wsj.
com/articles/now-cybercriminals-are-misappropriating-businesses-web-addresses-1426120840.

[61] Roland van Rijswijk-Deij, Mattijs Jonker, Anna Sperotto, and Aiko Pras. 2016. A High-Performance, Scalable
Infrastructure for Large-Scale Active DNS Measurements. IEEE J. Sel. Areas Commun. 34, 6 (2016), 1877–1888.
https://doi.org/10.1109/JSAC.2016.2558918

[62] W3Techs. 2022. Usage statistics of content management systems. https://w3techs.com/technologies/overview/content_
management. Last accessed: Oct. 6, 2022.

[63] W3Techs. 2022. Usage statistics of web hosting providers. https://w3techs.com/technologies/overview/web_hosting.
Last accessed: Oct. 6, 2022.

[64] Wikipedia. 2022. HTTP 404. https://en.wikipedia.org/wiki/HTTP_404#Soft_404_errors.
[65] Wikipedia contributors. 2022. Domain generation algorithm —Wikipedia, The Free Encyclopedia. https://en.wikipedia.

org/w/index.php?title=Domain_generation_algorithm&oldid=1068669787 [Online; accessed 13-October-2022].
[66] Wikipedia contributors. 2022. Entropy (information theory) —Wikipedia, The Free Encyclopedia. https://en.wikipedia.

org/w/index.php?title=Entropy_(information_theory)&oldid=1115105228 [Online; accessed 16-October-2022].

A ALGORITHMS ADOPTED BY HOSTINGCHECKER
We present the algorithms of HostingChecker below. Algorithm 1 is the pseudocode for finding
service endpoint candidates in Section 4.3 (Step 1). Algorithm 2 is the pseudocode for reconstructing
domain dependency chains from passive DNS traffic, used in Section 4.4.

B CONSIDERATIONS OF SYSTEM PARAMETER SELECTION
DNS chain reconstruction. In this module, HostingChecker needs to set thresholds for Total
Query Volume (TQV) of FQDNs and Daily Query Volume (DQV) of DNS records, and the selection
depends only on the popularity and activity of the domain names. For example, if the minimum
TQV is set to 1, all FQDNs appearing in the historical traffic should be extracted. However, the
lookup volume of some FQDNs shows a long tail, such as temporarily constructed domains for
scanning purposes, unintentionally accessed domains with typos, or disposable domains that are

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

https://doi.org/10.14722/ndss.2023.23005
https://doi.org/10.1145/2976749.2978387
https://docs.microsoft.com/en-us/azure/security/fundamentals/azure-domains
https://docs.microsoft.com/en-us/azure/security/fundamentals/azure-domains
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1034
https://owasp.org/www-project-amass/
https://www.pcworld.com/article/432090/like-google-in-vietnam-lenovo-tripped-up-by-a-dns-attack.html
https://www.pcworld.com/article/432090/like-google-in-vietnam-lenovo-tripped-up-by-a-dns-attack.html
https://github.com/projectdiscovery/subfinder
https://rapiddns.io/
https://datatracker.ietf.org/doc/draft-sahib-domain-verification-techniques/03/
https://datatracker.ietf.org/doc/draft-sahib-domain-verification-techniques/03/
https://doi.org/10.48550/arXiv.2209.09603
https://arxiv.org/abs/2209.09603
https://securitytrails.com/list/apex_domain/amazon.com
https://securitytrails.com/list/apex_domain/amazon.com
https://www.usenix.org/conference/usenixsecurity21/presentation/squarcina
https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-A-New-Class-Of-DNS-Vulnerabilities-Affecting-Many-DNS-As-Service-Platforms.pdf
https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-A-New-Class-Of-DNS-Vulnerabilities-Affecting-Many-DNS-As-Service-Platforms.pdf
https://www.wsj.com/articles/now-cybercriminals-are-misappropriating-businesses-web-addresses-1426120840
https://www.wsj.com/articles/now-cybercriminals-are-misappropriating-businesses-web-addresses-1426120840
https://doi.org/10.1109/JSAC.2016.2558918
https://w3techs.com/technologies/overview/content_management
https://w3techs.com/technologies/overview/content_management
https://w3techs.com/technologies/overview/web_hosting
https://en.wikipedia.org/wiki/HTTP_404#Soft_404_errors
https://en.wikipedia.org/w/index.php?title=Domain_generation_algorithm&oldid=1068669787
https://en.wikipedia.org/w/index.php?title=Domain_generation_algorithm&oldid=1068669787
https://en.wikipedia.org/w/index.php?title=Entropy_(information_theory)&oldid=1115105228
https://en.wikipedia.org/w/index.php?title=Entropy_(information_theory)&oldid=1115105228

Detecting and Measuring Security Risks of Hosting-Based Dangling Domains 9:25

Algorithm 1 Search for service endpoint candidates
Input: 𝑃𝑎𝑠𝑠𝑖𝑣𝑒𝑅𝑅𝑠 ,𝑀𝑖𝑛dqv,𝑀𝑖𝑛𝐷𝑁

Output: 𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠
1: 𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠 ← ∅;
2: 𝐷𝑜𝑚𝑎𝑖𝑛𝑇𝑢𝑝𝑙𝑒𝑠 ← ∅;
3: for each 𝑅𝑅 ∈ 𝑃𝑎𝑠𝑠𝑖𝑣𝑒𝑅𝑅𝑠 do
4: qname, rtype, rdata, dqv← unpack(𝑅𝑅)
5: if rtype ∈ [CNAME, NS, MX] and isLegal(rdata) and dqv ≥ 𝑀𝑖𝑛dqv then
6: qapex, rapex← Getapex(qname, rdata);
7: 𝐷𝑜𝑚𝑎𝑖𝑛𝑇𝑢𝑝𝑙𝑒𝑠 ← [qname, qapex, rdata, rapex]
8: if qapex is new for rapex then rapex.dn += 1
9: end if
10: end if
11: end for
12: for each [qname, qapex, rdata, rapex] ∈ 𝐷𝑜𝑚𝑎𝑖𝑛𝑇𝑢𝑝𝑙𝑒𝑠 do
13: if rapex.dn ≥ 𝑀𝑖𝑛𝐷𝑁 then 𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠 ← rdata
14: end if
15: end for

Algorithm 2 Activity-based DNS Chain Reconstruction
Input: fqdn, depth, 𝑀𝑎𝑥𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒,𝑀𝑖𝑛dqv
Output: 𝐷𝑛𝑠𝐶ℎ𝑎𝑖𝑛

1: procedure GetChains(fqdn, depth)
2: if depth > 𝑀𝑎𝑥𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 then
3: return ∅;
4: end if
5: 𝑐ℎ𝑎𝑖𝑛.𝐷𝑜𝑚𝑎𝑖𝑛 ← fqdn;
6: 𝑐ℎ𝑎𝑖𝑛.𝐶ℎ𝑎𝑖𝑛𝑠 ← ∅;
7: 𝑅𝑅𝑆𝑒𝑡 ← get_pdns_rrset(fqdn);
8: for each 𝑅𝑅 ∈ 𝑅𝑅𝑆𝑒𝑡 do
9: rtype, rdata, dqv← unpack(𝑅𝑅);
10: if isNotChecked(rdata) and isLegal(rdata) and dqv ≥ 𝑀𝑖𝑛dqv then
11: if rtype == 𝐶𝑁𝐴𝑀𝐸 then
12: 𝑐𝑢𝑟𝑟𝐶ℎ𝑎𝑖𝑛 ← GetChains(rdata, depth + 1);
13: else if rtype ∈ [𝑁𝑆,𝑀𝑋,𝐴] then
14: 𝑐𝑢𝑟𝑟𝐶ℎ𝑎𝑖𝑛.𝐷𝑜𝑚𝑎𝑖𝑛 ← rdata;
15: 𝑐𝑢𝑟𝑟𝐶ℎ𝑎𝑖𝑛.𝐶ℎ𝑎𝑖𝑛𝑠 ← ∅
16: end if
17: end if
18: Append 𝑐𝑢𝑟𝑟𝐶ℎ𝑎𝑖𝑛 to 𝑐ℎ𝑎𝑖𝑛.𝐶ℎ𝑎𝑖𝑛𝑠 ;
19: end for
20: return 𝑐ℎ𝑎𝑖𝑛;
21: end procedure
22: 𝐷𝑛𝑠𝐶ℎ𝑎𝑖𝑛 ← GetChains(fqdn, 1)

automatically created on demand. According to the existing work [31], the FQDNs that receive less
than 10 lookups overall can be assumed to be long-tail data. Besides, the number of subdomains we
can obtain tends to be stable when the minimum TQV is not less than 10. Therefore, we set TQV to
10 in our measurements, i.e., each domain name should have been visited at least 10 times in total.
It’s worth noting that this is only the lower bound for subdomain filtering, which ensures that we
have obtained valid subdomains that appeared consistently in the historical traffic.
In addition, we only select data from the latest day of each detection to reduce the latency of

detection results. Thus, we creatively use DQV to filter DNS records to reconstruct resolution

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

9:26 Mingming Zhang et al.

≥
DQV of RRs

Fig. 12. ECDF of DNS RRs volume with DQVs. Fig. 13. Label count of domains in the PSL.

chains. Here, DQV is set for filtering out infrequent DNS records, which is similar to TQV for
subdomains. We empirically set the minimum DQV of DNS RRs to 200 and assume the RRs being
visited less than 200 times as the long tail. This is because more than 75% RRs have a DQV of over
200 (see Figure 12).
Service discovery. For obtaining potential service endpoints, HostingChecker also employs a
parameter, DQV, which is the same as in the DNS Chain Reconstruction module. The difference is
that the service discoverer uses it to filter only CNAME RRs. Besides, as introduced in Section 4.3,
domain names of service endpoints often have common domain suffixes controlled by hosting
providers. We heuristically selected the CNAMEs that are depended on by over 1,000 domains (i.e.,
DN is larger than 1k), since service providers with more than 1,000 customers may have a greater
impact on the ecosystem.
Next, for extracting common patterns of obtained endpoint names, a few attributes (shown in

Figure 5) are used to construct and prune the domain suffix tree. First, it appears from the public
suffix list (PSL) that the label levels of public suffixes are generally no more than 5, as depicted in
Figure 13, and over 98% suffixes have ≤ 3 labels. Thus, we typically merge all nodes whose suffix
level is ≥ 5. Second, the service discoverer will prune the domain name tree from the bottom up by
the following attributes: (1) DN: It represents the dependency number of the current level of suffix.
We assume that if the DN of a particular level of the suffix is large, then the suffix is more likely
to be part of the common pattern. In contrast, if the DN suddenly becomes smaller by a certain
level, then it is more likely to be an endpoint name assigned to a specific user. (2) subCount: In
practical terms, service endpoint patterns typically contain over 2 labels, i.e., the shortest suffixes
are SLDs, and thus we leave all nodes at level ≤ 2. Besides, according to the published endpoint
names [21, 26], we set different limitations for subCount in different levels. For example, the region
labels’ count (mostly in the third or fourth label from the suffixes) is set to no more than 50, the
service types may not be more than 20, but the user-defined prefixes can be more than a thousand.
(3) subEntropy: As there are usually a few endpoint patterns for a service, the subEntropy of
nodes in the suffix can be within a limited range. However, the prefixes of service endpoint names
(e.g., ‘alice-prefix’ in Figure 5) are user-specified, so the subEntropy of the last level of suffixes can
increase abruptly compared to the previous levels. To this end, we will merge the sub-nodes of
𝑁𝑜𝑑𝑒𝑙𝑒𝑣𝑒𝑙𝑖+1 if the subEntropy of 𝑁𝑜𝑑𝑒𝑙𝑒𝑣𝑒𝑙𝑖+1 is larger than that of 𝑁𝑜𝑑𝑒𝑙𝑒𝑣𝑒𝑙𝑖 .

C DOMAIN COVERAGE FOR 34 DATA SOURCES
We use amass and subfinder to perform a comparison experiment for subdomain collection. We
employ 27 and 7 data sources ranging from different technique methods that allow collecting
domains for free, and the data sources are listed in Table 6. We depict the distribution of covered
apex domains of our samples (4k in total) and the obtained subdomains from different data sources
in Figure 14. It proves that our dataset exhibits high coverage from the perspective of apex domains

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

Detecting and Measuring Security Risks of Hosting-Based Dangling Domains 9:27

Table 6. Other data sources for subdomain collection.

Tool Techniques Data Sources

amass

Web Archives ArchiveIt, Arquivo, CommonCrawl, UKWebArchive, Wayback

Scraping Ask, Baidu, Bing, DNSDumpster, DuckDuckGo, Gists, HackerOne
HyperStat, PKey, RapidDNS, Searchcode, Searx, SiteDossier, Yahoo

Certificates CertSpotter, Digitorus
APIs FullHunt, Maltiverse, Mnemonic, SonarSearch, Sublist3rAPI, URLScan

subfinder

WHOIS AlienVault
Certificates Crtsh
APIs HackerTarget, ThreatCrowd, ThreatMiner, AnubisDB
Scraping Riddler

and subdomains. Results show that only Rapid7 (i.e., Project Sonar) can obtain more subdomains
than ours, which however only covers 68.6% of tested apex domains. Domains in SSL certificates
that are obtained from crt.sh can cover a high percentage (85.3%) of apex domains. However, it
seems not all their subdomains have enabled SSL settings, i.e., the collected subdomains are fewer
than ours. In addition, Figure 15 illustrates that our subdomain results are diverse in domain label
numbers, which can include the domains used in special scenarios, such as back-end APIs, DGA
domains, or misconfigured domains.

Fig. 14. Volume of obtained subdomain names and
covered base domains using different data sources.

Fig. 15. Label count of collected subdomains using
different data sources.

D DOMAIN AND SERVICE DEPENDENCY
We find that some providers may expose a large scale of user domains to security threats, and
the domain names that indirectly depend on these services could also be vulnerable. We present
examples showing the threat scale caused by some vulnerable domains in Figure 16.

Received 11 August 2022; revised 20 October 2022; accepted 9 December 2022

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

9:28 Mingming Zhang et al.

Exploitable Service

Abandoned Domain
Indirect Dangling Domain

Intermediate Domain in Chains

Dependency

Fig. 16. Domain dependencies can cause a cascading effect of domain takeover threats.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 9. Publication date: March 2023.

	Abstract
	1 Introduction
	2 Background
	2.1 DNS Basics
	2.2 Dangling DNS Records

	3 Public Hosting Service and Study Scope
	3.1 Public Hosting Service
	3.2 Our Study Scope: Hosting-based Domain Takeover
	3.3 Comparison with Related Work

	4 HostingChecker: A Detection System
	4.1 Empirical Observations
	4.2 System Workflow
	4.3 Discovering Vulnerable Services
	4.4 Detecting Hosting-based Dangling Domains

	5 Implementation and Evaluation
	5.1 System Development
	5.2 Coverage
	5.3 Efficiency
	5.4 Detection Accuracy
	5.5 Discussion

	6 Large-scale Measurement and Analysis
	6.1 Systematic Analysis of Hosting Services
	6.2 Threats on High-profile Domain Names

	7 Discussion
	8 Conclusion
	Acknowledgments
	References
	A Algorithms adopted by HostingChecker
	B Considerations of System Parameter Selection
	C Domain coverage for 34 data sources
	D Domain and Service Dependency

